Secretary problems: weights and discounts
نویسندگان
چکیده
The classical secretary problem studies the problem of selecting online an element (a “secretary”) with maximum value in a randomly ordered sequence. The difficulty lies in the fact that an element must be either selected or discarded upon its arrival, and this decision is irrevocable. Constant-competitive algorithms are known for the classical secretary problems (see, e.g., the survey of Freeman [7]) and several variants. We study the following two extensions of the secretary problem: • In the discounted secretary problem, there is a time-dependent “discount” factor d(t), and the benefit derived from selecting an element/secretary e at time t is d(t)·v(e). For this problem with arbitrary (not necessarily decreasing) functions d(t), we show a constant-competitive algorithm when the expected optimum is known in advance. With no prior knowledge, we exhibit a lower bound of Ω( log n log log n ), and give a nearlymatching O(log n)-competitive algorithm. • In the weighted secretary problem, up to K secretaries can be selected; when a secretary is selected (s)he must be irrevocably assigned to one of K positions, with position k having weight w(k), and assigning object/secretary e to position k has benefit w(k) · v(e). The goal is to select secretaries and assign them to positions to maximize ∑ e,k w(k) · v(e) · xek where xek is an indicator variable that secretary e is assigned position k. We give constant-competitive algorithms for this problem. Most of these results can also be extended to the matroid secretary case (Babaioff et al. [2]) for a large family of matroids with a constant-factor loss, and an O(log rank) loss for general matroids. These results are based on a reduction from various matroids to partition matroids which present a unified approach to many of the upper bounds of Babaioff et al. These problems have connections to online mechanism design (see, e.g., Hajiaghayi et al. [9]). All our algorithms are monotone, and hence lead to truthful mechanisms for the corresponding online auction problems.
منابع مشابه
Algorithms for Secretary Problems on Graphs and Hypergraphs
We examine several online matching problems, with applications to Internet advertising reservation systems. Consider an edge-weighted bipartite graph G, with partite sets L,R. We develop an 8-competitive algorithm for the following secretary problem: Initially given R, and the size of L, the algorithm receives the vertices of L sequentially, in a random order. When a vertex l ∈ L is seen, all e...
متن کاملA Knapsack Secretary Problem with Applications
We consider situations in which a decision-maker with a fixed budget faces a sequence of options, each with a cost and a value, and must select a subset of them online so as to maximize the total value. Such situations arise in many contexts, e.g., hiring workers, scheduling jobs, and bidding in sponsored search auctions. This problem, often called the online knapsack problem, is known to be in...
متن کاملImproved algorithms and analysis for the laminar matroid secretary problem
In a matroid secretary problem, one is presented with a sequence of objects of various weights in a random order, and must choose irrevocably to accept or reject each item. There is a further constraint that the set of items selected must form an independent set of an associated matroid. Constant-competitive algorithms (algorithms whose expected solution weight is within a constant factor of th...
متن کاملAn optimization technique for vendor selection with quantity discounts using Genetic Algorithm
Vendor selection decisions are complicated by the fact that various conflicting multi-objective factors must be considered in the decision making process. The problem of vendor selection becomes still more compli-cated with the inclusion of incremental discount pricing schedule. Such hard combinatorial problems when solved using meta heuristics produce near optimal solutions. This paper propose...
متن کاملAdvances on Matroid Secretary Problems: Free Order Model and Laminar Case
The most important open conjecture in the context of the matroid secretary problem claims the existence of an O(1)-competitive algorithm applicable to any matroid. Whereas this conjecture remains open, modified forms of it have been shown to be true, when assuming that the assignment of weights to the secretaries is not adversarial but uniformly at random [23, 20]. However, so far, no variant o...
متن کامل